Reflection coefficient and permeability of urea and ethylene glycol in the human red cell membrane

نویسندگان

  • D G Levitt
  • H J Mlekoday
چکیده

The reflection coefficient (sigma) and permeability (P) of urea and ethylene glycol were determined by fitting the equations of Kedem and Katchalsky (1958) to the change in light scattering produced by adding a permeable solute to a red cell suspension. The measurements incorporated three important modifications: (a) the injection artifact was eliminated by using echinocyte cells; (b) the use of an additional adjustable parameter (Km), the effective dissociation constant at the inner side of the membrane; (c) the light scattering is not directly proportional to cell volume (as is usually assumed) because refractive index and scattering properties of the cell depend on the intracellular permeable solute concentration. This necessitates calibrating for known changes in refractive index (by the addition of dextran) and cell volume (by varying the NaCl concentration). The best fit was for sigma = 0.95, Po = 8.3 X 10(-4) cm/s, and Km = 100 mM for urea and sigma = 1.0, Po = 3.9 X 10(-4) cm/s, and Km = 30 mM for ethylene glycol. The effects of the inhibitors copper, phloretin, p-chloromercuriphenylsulfonate, and 5,5'-dithiobis (2-nitro) benzoic acid on the urea, ethylene glycol, and water permeability were determined. The results suggest that there are three separate, independent transport systems: one for water, one for urea and related compounds, and one for ethylene glycol and glycerol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracer Determinations of Human Red Cell Membrane Permeability to Small Nonelectrolytes

A flow system has been used to determine the permeability of human red cell membranes to four small nonelectrolytes labeled with (14)C. The permeability coefficients, omega, in units of mol dyne(-1) sec(-1) x 10(15), are: ethylene glycol, 6; urea, 13; formamide, 22; and methanol, 131. The values for urea and formamide are in good agreement with values obtained by Sha'afi, Gary-Bobo, and Solomon...

متن کامل

The Water and Nonelectrolyte Permeability Induced in Thin Lipid Membranes by the Polyene Antibiotics Nystatin and Amphotericin B

Nystatin and amphotericin B increase the permeability of thin (<100 A) lipid membranes to ions, water, and nonelectrolytes. Water and nonelectrolyte permeability increase linearly with membrane conductance (i.e., ion permeability). In the unmodified membrane, the osmotic permeability coefficient, P(f), is equal to the tagged water permeability coefficient, (P(d))(w); in the nystatin- or amphote...

متن کامل

Urea and ethylene glycol-facilitated transport systems in the human red cell membrane. Saturation, competition, and asymmetry

The equilibrium exchange of [14C]urea and ethylene glycol was measured using a new type of fast flow system. Approximately equal volumes of saline and air were mixed to form a segmented fluid stream into which 14C-loaded red cells are injected. The stream flows through three filter chambers which allow sampling of the 14C in the extracellular fluid at three time points. The chambers are designe...

متن کامل

Effect of Ethylene Oxide Functional Groups in PEBA-CNT Membranes on CO2/CH4 Mixed Gas Separation

Poly (ether-block-amide) /poly (ethylene glycol)/ carbon nanotubes mixed matrix membranes have been successfully fabricated using solvent evaporation method to determine the effect of ethylene oxide groups on the performance of produced membranes. The effects of CNTs (2-8 wt%) and PEG (up to 50 wt%)were investigated in both single and mixed gas test setup in different temperature and pressure. ...

متن کامل

Developing of Ethylene Glycol as a New Reducing Agent for Preparation of Pd-Ag/PSS Composite Membrane for Hydrogen Separation

In the present work, for the first time, a palladium-silver membrane has been prepared by electroless plating on the surface of a porous stainless steel disk by using ethylene glycol as a new reducing agent and polyol process. The reducing action of ethylene-glycol in the presence of PVP as a protecting surface agent produces a membrane with finely divided powder and nano-sized pores. Furthermo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 81  شماره 

صفحات  -

تاریخ انتشار 1983